Abstract
AbstractHearing consists of a delicate chain of events. Sound is first captured by an eardrum or similar organ which is set into vibrations, these vibrations must then be transmitted to sensory cells in a manner that opens mechanosensory channels generating an electrical signal. Studying this process is challenging. Auditory vibrations are in the nano- to picometer-scale and occur at fast temporal scales of milli to microseconds. Finally, most of this process occurs within the body of the animal where it is inaccessible to conventional measurement techniques. For instance, even in crickets, a century-old auditory model system, it is unclear how sound evoked vibrations are transmitted to sensory neurons. Here, we use optical coherence tomography (OCT) to measure how vibrations travel within the auditory organ of the western tree cricket (Oecanthus californicus). We also measure the reversal of this process as mechanosensory cells generate spontaneous oscillations and amplify sound-evoked vibrations. Most importantly, we found that while the mechanosensory neurons were not attached to the peripheral sound collecting structures, they were mechanically well-coupled through acoustic trachea. Thus, the acoustic trachea are not merely conduits for sound but also perform a mechanical function. Our results generate several insights into the similarities between insect and vertebrate hearing, and into the evolutionary history of auditory amplification.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献