Auditory mechanics in the grig ( Cyphoderris monstrosa ): tympanal travelling waves and frequency discrimination as a precursor to inner ear tonotopy

Author:

Woodrow Charlie1ORCID,Pulver Christian1ORCID,Song Hojun2ORCID,Montealegre-Z Fernando1ORCID

Affiliation:

1. School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln LN6 7DL, UK

2. Department of Entomology, Texas A&M University, 2475 TAMU, 77843-2475 College Station, TX, USA

Abstract

Ensiferan orthopterans offer a key study system for acoustic communication and the process of insect hearing. Cyphoderris monstrosa (Hagloidea) belongs to a relict ensiferan family and is often used for evolutionary comparisons between bushcrickets (Tettigoniidae) and their ancestors. Understanding how this species processes sound is therefore vital to reconstructing the evolutionary history of ensiferan hearing. Previous investigations have found a mismatch in the ear of this species, whereby neurophysiological and tympanal tuning does not match the conspecific communication frequency. However, the role of the whole tympanum in signal reception remains unknown. Using laser Doppler vibrometry, we show that the tympana are tonotopic, with higher frequencies being received more distally. The tympana use two key modalities to mechanically separate sounds into two auditory receptor populations. Frequencies below approximately 8 kHz generate a basic resonant mode in the proximal end of the tympanum, whereas frequencies above approximately 8 kHz generate travelling waves in the distal region. Micro-CT imaging of the ear and the presented data suggest that this tonotopy of the tympana drive the tonotopic mechanotransduction of the crista acustica (CA). This mechanism represents a functional intermediate between simple tuned tympana and the complex tonotopy of the bushcricket CA.

Funder

H2020 European Research Council

NSF-NERC

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3