A Biophysical Model of Nonquantal Transmission at the Vestibular Hair Cell-Calyx Synapse: KLV currents Modulate Fast Electrical and Slow K+ potentials in the Synaptic Cleft

Author:

Govindaraju Aravind Chenrayan,Quraishi Imran H.,Lysakowski Anna,Eatock Ruth Anne,Raphael Robert M.

Abstract

AbstractVestibular hair cells transmit information about head position and motion across synapses to primary afferent neurons. At some of these synapses, the afferent neuron envelopes the hair cell, forming an enlarged synaptic terminal referred to as a calyx. The vestibular hair cell-calyx synapse supports nonquantal transmission (NQT), a neurotransmitter-independent mechanism that is exceptionally fast. The underlying biophysical mechanisms that give rise to NQT are not fully understood. Here we present a computational model of NQT that integrates morphological and electrophysiological data. The model predicts that NQT involves two processes: changes in cleft K+ concentration, as previously recognized, and very fast changes in cleft electrical potential. A significant finding is that changes in cleft electrical potential are faster than changes in [K+] or quantal transmission. The electrical potential mechanism thus provides a basis for the exceptional speed of neurotransmission between type I hair cells and primary neurons and explains experimental observations of fast postsynaptic currents. The [K+] mechanism increases the gain of NQT. Both processes are mediated by current flow through low-voltage-activated K+ (KLV) channels located in both pre-synaptic (hair cell) and post-synaptic (calyx inner face) membranes. The model further demonstrates that the calyx morphology is necessary for NQT; as calyx height is increased, NQT increases in size, speed and efficacy at depolarizing the afferent neuron. We propose that the calyx evolved to enhance NQT and speed up signals that drive vestibular reflexes essential for stabilizing the eyes and neck and maintaining balance during rapid and complex head motions.Significance StatementThe ability of the vestibular system to drive the fastest reflexes in the nervous system depends on rapid transmission of mechanosensory signals at vestibular hair-cell synapses. In mammals and other amniotes, afferent neurons form unusual large calyx terminals on certain hair cells, and transmission at those synapses includes nonquantal transmission (NQT), which avoids the synaptic delay of quantal transmission. We present a quantitative model that shows how NQT depends on the extent of the calyx covering the hair cell, and attributes the short latency of NQT to changes in synaptic cleft electrical potential caused by current flowing through open potassium channels in the hair cell. This previously undescribed mechanism may act at other synapses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3