Evidence that ultrafast non-quantal transmission underlies short-latency vestibular evoked potentials

Author:

Pastras Christopher J.ORCID,Curthoys Ian S.ORCID,Asadnia MohsenORCID,McAlpine DavidORCID,Rabbitt Richard D.ORCID,Brown Daniel J.ORCID

Abstract

AbstractAmniotes evolved a unique calyceal postsynaptic terminal in the vestibular organs of the inner ear that underpins quantal and non-quantal transmission at the synapse of sensory hair cells and vestibular afferent neurons. The non-quantal component is of particular interest as it includes an ultrafast synaptic current thought to underlie the exquisite synchronization of action potentials in vestibular afferent fibres to dynamic stimuli such as sound and vibration. Here we demonstrate evidence that non-quantal transmission is responsible for short latency vestibular evoked potentials (vCAPs) in the guinea pig utricle. We first show that, unlike auditory nerve responses which are completely abolished, vCAPs are insensitive to local administration of the AMPA receptor agonist CNQX. Moreover, latency comparisons between presynaptic hair cell and postsynaptic neural responses reveal that the vCAP occurs without measurable synaptic delay. Finally, using a paired-pulse stimulus designed to deplete the readily releasable pool of synaptic vesicles in hair cells, we reveal that forward masking is lacking in vestibular responses, compared to the equivalent cochlear responses. Our data support the hypothesis that the fast component of non-quantal transmission at calyceal synapses is indefatigable and responsible for ultrafast responses of vestibular organs evoked by transient stimulation.SignificanceThe mammalian vestibular system drives some of the fastest reflex pathways in the nervous system, ensuring stable gaze and postural control for locomotion on land. To achieve this, terrestrial amniotes evolved a large, unique calyx afferent terminal which completely envelopes one or more pre-synaptic vestibular hair cells, which transmits mechanosensory signals mediated by quantal and nonquantal (NQ) synaptic transmission. We present several lines of data in the guinea pig that reveal the pre-synaptic transmission of the most sensitive vestibular afferents are faster than their auditory nerve counterparts. Here, we present neurophysiological and pharmacological evidence that this vestibular speed advantage arises from ultrafast NQ electrical synaptic transmission from Type I hair cells to their calyx partners.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3