SARS-CoV-2 genome-based severity predictions correspond to lower qPCR values and higher viral load

Author:

Skarzynski MartinORCID,McAuley Erin M.ORCID,Maier Ezekiel J.ORCID,Fries Anthony C.ORCID,Voss Jameson D.ORCID,Chapleau Richard R.ORCID

Abstract

AbstractThe 2019 coronavirus disease (COVID-19) pandemic has demonstrated the importance of predicting, identifying, and tracking mutations throughout a pandemic event. As the COVID-19 global pandemic surpassed one year, several variants had emerged resulting in increased severity and transmissibility. In order to reduce the impact on human life, it is critical to rapidly identify which genetic variants result in increased virulence or transmission. To address the former, we evaluated if a genome-based predictive algorithm designed to predict clinical severity could predict polymerase chain reaction (PCR) results, as a surrogate for viral load and severity. Using a previously published algorithm, we compared the viral genome-based severity predictions to clinically-derived PCR-based viral load of 716 viral genomes. For those samples predicted to be “severe” (predicted severity score > 0.5), we observed an average cycle threshold (Ct) of 18.3, whereas those in in the “mild” category (severity prediction < 0.5) had an average Ct of 20.4 (P = 0.0017). We found a non-trivial correlation between predicted severity probability and cycle threshold (r = −0.199). Additionally, when divided into quartiles by prediction severity probability, the most probable quartile (≥75% probability) had a Ct of 16.6 (n=10) as compared to those least probable to be severe (<25%) of 21.4 (n=350) (P = 0.0045). Taken together, our results suggest that the severity predicted by a genome-based algorithm can be related to the metrics from the clinical diagnostic test, and that relative severity may be inferred from diagnostic values.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3