SARS-CoV-2 Genome-Based Severity Predictions Correspond to Lower qPCR Values and Higher Viral Load

Author:

Skarzynski Martin1,McAuley Erin M.1ORCID,Maier Ezekiel J.1ORCID,Fries Anthony C.2ORCID,Voss Jameson D.3ORCID,Chapleau Richard R.2ORCID

Affiliation:

1. Booz Allen Hamilton, Bethesda, MD 20814, USA

2. US Air Force School of Aerospace Medicine, Wright Patterson AFB, OH 45433, USA

3. US Air Force Medical Readiness Agency, Falls Church, VA 22042, USA

Abstract

The 2019 coronavirus disease (COVID-19) pandemic has demonstrated the importance of predicting, identifying, and tracking mutations throughout a pandemic event. As the COVID-19 global pandemic surpassed one year, several variants had emerged resulting in increased severity and transmissibility. Here, we used PCR as a surrogate for viral load and consequent severity to evaluate the real-world capabilities of a genome-based clinical severity predictive algorithm. Using a previously published algorithm, we compared the viral genome-based severity predictions to clinically derived PCR-based viral load of 716 viral genomes. For those samples predicted to be “severe” (probability of severe illness >0.5), we observed an average cycle threshold (Ct) of 18.3, whereas those in in the “mild” category (severity probability <0.5) had an average Ct of 20.4 ( P = 0.0017 ). We also found a nontrivial correlation between predicted severity probability and cycle threshold (r = −0.199). Finally, when divided into severity probability quartiles, the group most likely to experience severe illness (≥75% probability) had a Ct of 16.6 (n = 10), whereas the group least likely to experience severe illness (<25% probability) had a Ct of 21.4 (n = 350) ( P = 0.0045 ). Taken together, our results suggest that the severity predicted by a genome-based algorithm can be related to clinical diagnostic tests and that relative severity may be inferred from diagnostic values.

Publisher

Hindawi Limited

Subject

Public Health, Environmental and Occupational Health,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3