Glioma synapses recruit mechanisms of adaptive plasticity

Author:

Taylor Kathryn R.,Barron Tara,Zhang Helena,Hui Alexa,Hartmann Griffin,Ni Lijun,Venkatesh Humsa S.,Du Peter,Mancusi Rebecca,Yalçin Belgin,Chau Isabelle,Ponnuswami Anitha,Aziz-Bose Razina,Monje Michelle

Abstract

The nervous system plays an increasingly appreciated role in the regulation of cancer. In malignant gliomas, neuronal activity drives tumor progression not only through paracrine signaling factors such as neuroligin-3 and brain-derived neurotrophic factor (BDNF)1–3, but also through electrophysiologically functional neuron-to-glioma synapses4–6. Malignant synapses are mediated by calcium-permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors in both pediatric and adult high-grade gliomas4, 5, and consequent depolarization of the glioma cell membrane drives tumor proliferation4. The nervous system exhibits plasticity of both synaptic connectivity and synaptic strength, contributing to neural circuit form and functions. In health, one factor that promotes plasticity of synaptic connectivity7, 8 and strength9–13 is activity-regulated secretion of the neurotrophin BDNF. Here, we show that malignant synapses exhibit similar plasticity regulated by BDNF-TrkB (tropomyosin receptor kinase B) signaling. Signaling through the receptor TrkB14, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. This potentiation of malignant synaptic strength shares mechanistic features with the long-term potentiation (LTP)15–23 that is thought to contribute to memory and learning in the healthy brain22 24–27 28, 29. BDNF-TrkB signaling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of TrkB in human glioma cells exerts growth inhibitory effects in vivo and in neuron:glioma co-cultures that cannot be explained by classical growth factor signaling alone. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of pediatric glioblastoma and diffuse intrinsic pontine glioma (DIPG). Taken together, these findings indicate that BDNF-TrkB signaling promotes malignant synaptic plasticity and augments tumor progression.

Publisher

Cold Spring Harbor Laboratory

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3