Parametric control of flexible timing through low-dimensional neural manifolds

Author:

Beiran ManuelORCID,Meirhaeghe NicolasORCID,Sohn HansemORCID,Jazayeri MehrdadORCID,Ostojic SrdjanORCID

Abstract

AbstractBiological brains possess an unparalleled ability to generalize adaptive behavioral responses from only a few examples. How neural processes enable this capacity to extrapolate is a fundamental open question. A prominent but underexplored hypothesis suggests that generalization is facilitated by a low-dimensional organization of collective neural activity. Here we tested this hypothesis in the framework of flexible timing tasks where dynamics play a key role. Examining trained recurrent neural networks we found that confining the dynamics to a low-dimensional subspace allowed tonic inputs to parametrically control the overall input-output transform and enabled smooth extrapolation to inputs well beyond the training range. Reverse-engineering and theoretical analyses demonstrated that this parametric control of extrapolation relies on a mechanism where tonic inputs modulate the dynamics along non-linear manifolds in activity space while preserving their geometry. Comparisons with neural data from behaving monkeys confirmed the geometric and dynamical signatures of this mechanism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3