Cellular and transcriptional diversity over the course of human lactation

Author:

Nyquist Sarah K.,Gao Patricia,Haining Tessa K. J.,Retchin Michael R.,Maor Yarden Golan,Drake Riley S.,Kolb Kellie,Mead Benjamin E.ORCID,Ahituv Nadav,Martinez Micaela E.,Berger Bonnie,Shalek Alex K.,Goods Brittany A.

Abstract

ABSTRACTHuman breast milk is a dynamic fluid that contains millions of cells, but their identities and phenotypic properties are poorly understood. We used single-cell RNA-seq (scRNA-seq) to characterize the transcriptomes of cells from human breast milk (hBM) across lactational time from 3 to 632 days postpartum in 15 donors. We find that the majority of cells in human breast milk are lactocytes, a specialized epithelial subset, and cell type frequencies shift over the course of lactation yielding greater epithelial diversity at later points. Analysis of lactocytes reveals a continuum of cell states characterized by transcriptional changes in hormone, growth factor, and milk production related pathways. Generalized additive models suggest that one sub-cluster, LALBAlow epithelial cells, increase as a function of time postpartum, daycare attendance, and the use of hormonal birth control. We identify several sub-clusters of macrophages in hBM that are enriched for tolerogenic functions, possibly playing a role in protecting the mammary gland during lactation. Our description of the cellular components of breast milk, their association with maternal-infant dyad metadata and quantification of alterations at the gene and pathways levels provides the first detailed longitudinal picture of human breast milk cells across lactational time. This work paves the way for future investigations of how a potential division of cellular labor and differential hormone regulation might be leveraged therapeutically to support healthy lactation and potentially aid in milk production.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3