Abstract
AbstractAfter fertilization, the sperm and egg contribute unequally to the newly formed zygote. While the sperm contributes mainly paternal DNA, the egg provides both maternal DNA and the bulk of the future embryonic cytoplasm. Most embryonic processes (like the onset of zygotic transcription) depend on maternally-provided cytoplasmic components, and it is largely unclear whether paternal components besides the centrosome play a role in the regulation of early embryogenesis. Here we report a reciprocal zebrafish-medaka hybrid system as a powerful tool to investigate paternal vs. maternal influence during early development. By combining expression of zebrafish Bouncer on the medaka egg with artificial egg activation, we demonstrate the in vitro generation of paternal zebrafish x maternal medaka (reripes) hybrids. These hybrids complement the previously established paternal medaka x maternal zebrafish (latio) hybrids (Herberg et al., 2018). As proof of concept, we investigated maternal vs. paternal control of zygotic genome activation (ZGA) timing using this reciprocal hybrid system. RNA-seq analysis of the purebred fish species and hybrids revealed that the onset of ZGA is primarily governed by the egg. Overall, our study establishes the reciprocal zebrafish-medaka hybrid system as a versatile tool to dissect parental control mechanisms during early development.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献