A conserved fertilization complex of Izumo1, Spaca6, and Tmem81 mediates sperm-egg interaction in vertebrates

Author:

Deneke Victoria E.,Blaha Andreas,Lu Yonggang,Draper Jonne M.,Phan Clara S.,Panser Karin,Schleiffer Alexander,Jacob Laurine,Humer Theresa,Stejskal Karel,Krssakova Gabriela,Handler Dominik,Kamoshita Maki,Vance Tyler D.R.,Roitinger Elisabeth,Lee Jeffrey E.,Ikawa Masahito,Pauli Andrea

Abstract

ABSTRACTFertilization, the fusion of sperm and egg, is essential for sexual reproduction. While several proteins have been demonstrated to be essential for the binding and fusion of gametes in vertebrates, the molecular mechanisms driving this key process are poorly understood. Here, we performed a protein interaction screen using AlphaFold-Multimer to uncover protein-protein interactions in fertilization. This screen resulted in the prediction of a trimeric complex composed of the essential fertilization factors Izumo1 and Spaca6, and Tmem81, a protein previously not implicated in fertilization. We show that Tmem81 is a conserved, testis-expressed transmembrane protein that is evolutionarily related to Izumo1 and Spaca6 and is essential for male fertility in fish and mice. Consistent with trimer formationin vivo, zebrafishizumo1-/-,spaca6-/-, andtmem81-/-mutants exhibit the same sperm-egg binding defect and show co-depletion of all three proteins in sperm. Moreover, we provide experimental evidence that Izumo1, Spaca6, and Tmem81 interact in zebrafish sperm. Strikingly, the Izumo1-Spaca6 interaction is predicted to form a cleft that serves as a binding site for Bouncer, the only identified egg protein essential for fertilization in zebrafish. Together, these results provide compelling evidence for a conserved sperm factor complex in vertebrates that forms a specific interface for the sperm-egg interaction required for successful fertilization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3