Parkinson’s disease-associated alterations of the gut microbiome can invoke disease-relevant metabolic changes

Author:

Baldini Federico,Hertel Johannes,Sandt Estelle,Thinnes Cyrille C.,Neuberger-Castillo Lorieza,Pavelka Lukas,Betsou Fay,Krüger Rejko,Thiele InesORCID,

Abstract

ABSTRACTParkinson’s disease (PD) is a systemic disease clinically defined by the degeneration of dopaminergic neurons in the brain. While alterations in the gut microbiome composition have been reported in PD, their functional consequences remain unclear. Herein, we first analysed the gut microbiome of patients and healthy controls by 16S rRNA gene sequencing of stool samples from the Luxembourg Parkinson’s study (n=147 typical PD cases, n=162 controls). All individuals underwent detailed clinical assessment, including neurological examinations and neuropsychological tests followed by self-reporting questionnaires. Second, we predicted the potential secretion for 129 microbial metabolites through personalised metabolic modelling using the microbiome data and genome-scale metabolic reconstructions of human gut microbes. Our key results include: 1. eight genera and nine species changed significantly in their relative abundances between PD patients and healthy controls. 2. PD-associated microbial patterns statistically depended on sex, age, BMI, and constipation. The relative abundances ofBilophilaandParaprevotellawere significantly associated with the Hoehn and Yahr staging after controlling for the disease duration. In contrast, dopaminergic medication had no detectable effect on the PD microbiome composition. 3. Personalised metabolic modelling of the gut microbiomes revealed PD-associated metabolic patterns in secretion potential of nine microbial metabolites in PD, including increased methionine and cysteinylglycine. The microbial pantothenic acid production potential was linked to the presence of specific non-motor symptoms and attributed to individual bacteria, such asAkkermansia muciniphilaandBilophila wardswarthia. Our results suggest that PD-associated alterations of gut microbiome could translate into functional differences affecting host metabolism and disease phenotype.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3