ConvexML: Scalable and accurate inference of single-cell chronograms from CRISPR/Cas9 lineage tracing data

Author:

Prillo Sebastian,Ravoor Akshay,Yosef Nir,Song Yun S.ORCID

Abstract

AbstractCRISPR/Cas9 gene editing technology has enabled lineage tracing for thousands of cellsin vivo. However, most of the analysis of CRISPR/Cas9 lineage tracing data has so far been limited to the reconstruction of single-cell treetopologies, which depict lineage relationships between cells, but not the amount of time that has passed between ancestral cell states and the present. Time-resolved trees, known aschronograms, would allow one to study the evolutionary dynamics of cell populations at an unprecedented level of resolution. Indeed, time-resolved trees would reveal the timing of events on the tree, the relative fitness of subclones, and the dynamics underlying phenotypic changes in the cell population – among other important applications. In this work, we introduce the first scalable and accurate method to refine any given single-cell tree topology into a single-cell chronogram by estimating its branch lengths. To do this, we leverage a statistical model of CRISPR/Cas9 cutting with missing data, paired with a conservative version of maximum parsimony that reconstructs only the ancestral states that we are confident about. As part of our method, we propose a novel approach to represent and handle missing data – specifically, double-resection events – which greatly simplifies and speeds up branch length estimation without compromising quality. All this leads to a convex maximum likelihood estimation (MLE) problem that can be readily solved in seconds with off-the-shelf convex optimization solvers. To stabilize estimates in low-information regimes, we propose a simple penalized version of MLE using a minimum branch length and pseudocounts. We benchmark our method using simulations and show that it performs well on several tasks, outperforming more naive baselines. Our method, which we name ‘ConvexML’, is available through the cassiopeia open source Python package.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3