Detecting branching rate heterogeneity in multifurcating trees with applications in lineage tracing data

Author:

Gao YingnanORCID,Feder Alison FORCID

Abstract

AbstractUnderstanding cellular birth rate differences is crucial for predicting cancer progression and interpreting tumor-derived genetic data. Lineage tracing experiments enable detailed reconstruction of cellular genealogies, offering new opportunities to measure branching rate heterogeneity. However, the lineage tracing process can introduce complex tree features that complicate this effort. Here, we examine tree characteristics in lineage tracing-derived genealogies and find that editing window placement leads to multifurcations at a tree’s root or tips. We propose several ways in which existing tree topology-based metrics can be extended to test for rate heterogeneity on trees even in the presence of lineage-tracing associated distortions. Although these methods vary in power and robustness, a test based on theJ1statistic effectively detects branching rate heterogeneity in simulated lineage tracing data. Tests based on other common statistics (ŝand the Sackin index) show interior performance toJ1. We apply our validated methods to xenograft experimental data and find widespread rate heterogeneity across multiple study systems. Our results demonstrate the potential of tree topology statistics in analyzing lineage tracing data, and highlight the challenges associated with adapting phylogenetic methods to these systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3