Database size positively correlates with the loss of species-level taxonomic resolution for the 16S rRNA and other prokaryotic marker genes

Author:

Commichaux SethORCID,Luan Tu,Muralidharan Harihara Subrahmaniam,Pop Mihai

Abstract

AbstractFor decades, the 16S rRNA gene has been used to taxonomically classify prokaryotic species and to taxonomically profile microbial communities. The 16S rRNA gene has been criticized for being too conserved to differentiate between distinct species. We argue that the inability to differentiate between species is not a unique feature of the 16S rRNA gene. Rather, we observe the gradual loss of species-level resolution for other marker genes as the number of gene sequences increases in reference databases. We demonstrate this effect through the analysis of three commonly used databases of nearly-universal prokaryotic marker genes: the SILVA 16S rRNA gene database, the Genome Taxonomy Database (GTDB), and a set of 40 taxonomically-informative single-copy genes. Our results reflect a more fundamental property of the taxonomies themselves and have broad implications for bioinformatic analyses beyond taxonomic classification. Effective solutions for fine-level taxonomic classification require a more precise, and operationally-relevant, definition of the taxonomic labels being sought, and the use of combinations of genomic markers in the classification process.ImportanceThe use of reference databases for assigning taxonomic labels to genomic and metagenomic sequences is a fundamental bioinformatic task in the characterization of microbial communities. The increasing accessibility of high throughput sequencing has led to a rapid increase in the size and number of sequences in databases. This has been beneficial for improving our understanding of the global microbial genetic diversity. However, there is evidence that as the microbial diversity is more densely sampled, increasingly longer genomic segments are needed to differentiate between distinct species. The scientific community needs to be aware of this issue and needs to develop methods that better account for it when assigning taxonomic labels to metagenomic sequences from microbial communities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3