RERconverge Expansion: Using Relative Evolutionary Rates to Study Complex Categorical Trait Evolution

Author:

Redlich Ruby,Kowalczyk AmandaORCID,Tene Michael,Sestili Heather H.,Foley Kathleen,Saputra ElysiaORCID,Clark Nathan,Chikina MariaORCID,Meyer Wynn K.ORCID,Pfenning AndreasORCID

Abstract

AbstractComparative genomics approaches seek to associate evolutionary genetic changes with the evolution of phenotypes across a phylogeny. Many of these methods, including our evolutionary rates based method, RERconverge, lack the capability of analyzing non-ordinal, multicategorical traits. To address this limitation, we introduce an expansion to RERconverge that associates shifts in evolutionary rates with the convergent evolution of multi-categorical traits. The categorical RERconverge expansion includes methods for performing categorical ancestral state reconstruction, statistical tests for associating relative evolutionary rates with categorical variables, and a new method for performing phylogenetic permulations on multi-categorical traits. In addition to demonstrating our new method on a three-category diet phenotype, we compare its performance to naive pairwise binary RERconverge analyses and two existing methods for comparative genomic analyses of categorical traits: phylogenetic simulations and a phylogenetic signal based method. We also present a diagnostic analysis of the new permulations approach demonstrating how the method scales with the number of species and the number of categories included in the analysis. Our results show that our new categorical method outperforms phylogenetic simulations at identifying genes and enriched pathways significantly associated with the diet phenotype and that the new ancestral reconstruction drives an improvement in our ability to capture diet-related enriched pathways. Our categorical permulations were able to account for non-uniform null distributions and correct for non-independence in gene rank during pathway enrichment analysis. The categorical expansion to RERconverge will provide a strong foundation for applying the comparative method to categorical traits on larger data sets with more species and more complex trait evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3