Contrasting levels of transcriptome-wide SNP diversity and decoupled patterns of molecular and functional adaptive variation in conifers

Author:

Pavy Nathalie,Gérardi SébastienORCID,Prunier JulienORCID,Rigault Philippe,Laroche Jérôme,Daigle Gaétan,Boyle Brian,Mackay John,Bousquet Jean

Abstract

ABSTRACTAdaptive convergence can arise when response to natural selection involves shared molecular or functional mechanisms among multiple taxa. Conifers are of ancient origin with delayed sexual maturity related to their woody perennial nature. Thus, they represent a relevant plant group to assess if convergence from selection may have become disconnected between molecular and functional levels. In this purpose, transcriptome-wide SNP diversity was assessed in seven partially sympatric and reproductively isolated conifer species populating the temperate and boreal forests of northeastern North America. SNP diversity was found highly heterogeneous among species, which would relate to variation in species-specific demography and history. Rapidly evolving genes with signatures of positive selection were identified, and their relative abundance among species reflected differences in transcriptome-wide SNP diversity. Their analysis also revealed very limited convergence among taxa in spite of sampling same tissues at same age. However, convergence increased gradually at the levels of gene families and biological processes, which were largely related to stress response and regulatory mechanisms in all species. Given their multiple small to large gene families and long time since inception, conifers may have had sufficient gene network flexibility and gene functional redundancy for evolving alternative adaptive genes for similar metabolic responses to environmental selection pressures. Despite a long divergence time of ∼350 Mya between conifers and Angiosperms, we also uncovered a set of 20 key genes presumably under positive selection in both lineages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3