Assessing cross-contamination in spike-sorted electrophysiology data

Author:

Vincent Jack P.ORCID,Economo Michael N.ORCID

Abstract

ABSTRACTRecent advances in extracellular electrophysiology now facilitate the recording of spikes from hundreds or thousands of neurons simultaneously. This has necessitated both the development of new computational methods for spike sorting and better methods to determine spike sorting accuracy. One longstanding method of assessing the false discovery rate (FDR) of spike sorting – the rate at which spikes are misassigned to the wrong cluster – has been the rate of inter-spike-interval (ISI) violations. Despite their near ubiquitous usage in spike sorting, our understanding of how exactly ISI violations relate to FDR, as well as best practices for using ISI violations as a quality metric, remain limited. Here, we describe an analytical solution that can be used to predict FDR from ISI violation rate. We test this model in silico through Monte Carlo simulation, and apply it to publicly available spike-sorted electrophysiology datasets. We find that the relationship between ISI violation rate and FDR is highly nonlinear, with additional dependencies on firing rate, the correlation in activity between neurons, and contaminant neuron count. Predicted median FDRs in public datasets were found to range from 3.1% to 50.0%. We find that stochasticity in the occurrence of ISI violations as well as uncertainty in cluster-specific parameters make it difficult to predict FDR for single clusters with high confidence, but that FDR can be estimated accurately across a population of clusters. Our findings will help the growing community of researchers using extracellular electrophysiology assess spike sorting accuracy in a principled manner.SIGNIFICANCE STATEMENTHigh-density silicon probes are widely used to record the activity of large populations of neurons while animals are engaged in complex behavior. In this approach, each electrode records spikes from many neurons, and “spike sorting” algorithms are used to group the spikes originating from each neuron together. This process is error-prone, however, and so the ability to assess spike sorting accuracy is essential for properly interpreting neural activity. The rate of inter-spike-interval (ISI) violations is commonly used to assess spike sorting accuracy, but the relationship between ISI violation rate and sorting accuracy is complex and poorly understood. Here, we describe this relationship in detail and provide guidelines for how to properly use ISI violation rate to assess spike sorting accuracy.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3