PhysMAP - interpretablein vivoneuronal cell type identification using multi-modal analysis of electrophysiological data

Author:

Lee Eric KenjiORCID,Gül Asım Emre,Heller GreggoryORCID,Lakunina AnnaORCID,Jaramillo SantiagoORCID,Przytycki Pawel F.ORCID,Chandrasekaran ChandramouliORCID

Abstract

AbstractCells of different types perform diverse computations and coordinate their activity during sensation, perception, and action. While electrophysiological approaches can measure the activity of many neurons simultaneously, assigning cell type labels to these neurons is an open problem. Here, we develop PhysMAP, a framework that weighs multiple electrophysiological modalities simultaneously in an unsupervised manner and obtain an interpretable representation that separates neurons by cell type. PhysMAP is superior to any single electrophysiological modality in identifying neuronal cell types such as excitatory pyramidal, PV+interneurons, and SOM+interneurons with high confidence in both juxtacellular and extracellular recordings and from multiple areas of the mouse brain. PhysMAP built on ground truth data can be used for classifying cell types in new and existing electrophysiological datasets, and thus facilitate simultaneous assessment of the coordinated dynamics of multiple neuronal cell types during behavior.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3