A Stochastic Population Model for the Impact of Cancer Cell Dormancy on Therapy Success

Author:

Blath Jochen,Kraut Anna,Paul Tobias,Tóbiás András

Abstract

AbstractTherapy evasion – and subsequent disease progression – is a major challenge in current oncology. An important role in this context seems to be played by various forms of cancer cell dormancy. For example, therapy-induced dormancy, over short timescales, can create serious obstacles to aggressive treatment approaches such as chemotherapy, and long-term dormancy may lead to relapses and metastases even many years after an initially successful treatment. The underlying dormancy-related mechanisms are complex and highly diverse, so that the analysis even of basic patterns of the population-level consequences of dormancy requires abstraction and idealization, as well as the identification of the relevant specific scenarios.In this paper, we focus on a situation in which individual cancer cells may switch into and out of a dormant state both spontaneously as well as in response to treatment, and over relatively short time-spans. We introduce a mathematical ‘toy model’, based on stochastic agent-based interactions, for the dynamics of cancer cell populations involving individual short-term dormancy, and allow for a range of (multi-drug) therapy protocols. Our analysis shows that in our idealized model, even a small initial population of dormant cells can lead to therapy failure under classical (and in the absence of dormancy successful) single-drug treatments. We further investigate the effectiveness of several multidrug regimes (manipulating dormant cancer cells in specific ways) and provide some basic rules for the design of (multi-)drug treatment protocols depending on the types and parameters of dormancy mechanisms present in the population.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3