Identification of Hypertrophic Cardiomyopathy on Electrocardiographic Images with Deep Learning

Author:

Sangha VeerORCID,Dhingra Lovedeep SinghORCID,Oikonomou EvangelosORCID,Aminorroaya AryaORCID,Sikand Nikhil V,Sen SounokORCID,Krumholz Harlan MORCID,Khera RohanORCID

Abstract

ABSTRACTBackgroundHypertrophic cardiomyopathy (HCM) affects 1 in every 200 individuals and is the leading cause of sudden cardiac death in young adults. HCM can be identified using an electrocardiogram (ECG) raw voltage data and deep learning approaches, but their point-of-care application is limited by the inaccessibility of these signal data. We developed a deep learning-based approach that overcomes this limitation and detects HCM from images of 12-lead ECGs across layouts.MethodsWe identified ECGs from patients with HCM features present on cardiac magnetic resonance imaging (CMR) or those within 30 days of an echocardiogram documenting thickened interventricular septum (end-diastolic interventricular septum thickness > 15mm). Patients with CMR-confirmed HCM were considered as cases during the final model evaluation. The model was validated within clinical settings at YNHH and externally on ECG images from the prospective, population-based UK Biobank cohort. We localized class-discriminating signals in ECG images using gradient-weighted class activation mapping.ResultsOverall, 124,553 ECGs from 66,987 individuals (HCM cases and controls) were used for model development. The model demonstrated high discrimination for HCM across various ECG image formats and calibrations in internal validation (area under receiving operation characteristics [AUROC] 0.96) and external sets of ECG images from UK Biobank (AUROC 0.94). A positive screen for HCM was associated with a 100-fold higher odds of CMR-confirmed HCM (OR 102.4, 95% Confidence Interval, 57.4 – 182.6) in the held-out set. Class-discriminative patterns localized to the anterior and lateral leads (V4-V5).ConclusionsWe developed and externally validated a deep learning model that identifies HCM from ECG images with excellent discrimination. This approach represents an automated, efficient, and accessible screening strategy for HCM.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3