Using Artificial Intelligence to Predict Heart Failure Risk from Single-lead Electrocardiographic Signals: A Multinational Assessment

Author:

Dhingra Lovedeep SORCID,Aminorroaya AryaORCID,Camargos Aline Pedroso,Khunte Akshay,Sangha Veer,McIntyre Daniel,Chow Clara K,Asselbergs Folkert W,Brant Luisa CCORCID,Barreto Sandhi M,Ribeiro Antonio Luiz P,Krumholz Harlan MORCID,Oikonomou Evangelos KORCID,Khera RohanORCID

Abstract

ABSTRACTImportanceDespite the availability of disease-modifying therapies, scalable strategies for heart failure (HF) risk stratification remain elusive. Portable devices capable of recording single-lead electrocardiograms (ECGs) can enable large-scale community-based risk assessment.ObjectiveTo evaluate an artificial intelligence (AI) algorithm to predict HF risk from noisy single-lead ECGs.DesignMulticohort study.SettingRetrospective cohort of individuals with outpatient ECGs in the integrated Yale New Haven Health System (YNHHS) and prospective population-based cohorts of UK Biobank (UKB) and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).ParticipantsIndividuals without HF at baseline.ExposuresAI-ECG-defined risk of left ventricular systolic dysfunction (LVSD).Main Outcomes and MeasuresAmong individuals with ECGs, we isolated lead I ECGs and deployed a noise-adapted AI-ECG model trained to identify LVSD. We evaluated the association of the model probability with new-onset HF, defined as the first HF hospitalization. We compared the discrimination of AI-ECG against the pooled cohort equations to prevent HF (PCP-HF) score for new-onset HF using Harrel’s C-statistic, integrated discrimination improvement (IDI), and net reclassification improvement (NRI).ResultsThere were 194,340 YNHHS patients (age 56 years [IQR, 41-69], 112,082 women [58%]), 42,741 UKB participants (65 years [59-71], 21,795 women [52%]), and 13,454 ELSA-Brasil participants (56 years [41-69], 7,348 women [55%]) with baseline ECGs. A total of 3,929 developed HF in YNHHS over 4.5 years (2.6-6.6), 46 in UKB over 3.1 years (2.1-4.5), and 31 in ELSA-Brasil over 4.2 years (3.7-4.5). A positive AI-ECG screen was associated with a 3- to 7-fold higher risk for HF, and each 0.1 increment in the model probability portended a 27-65% higher hazard across cohorts, independent of age, sex, comorbidities, and competing risk of death. AI-ECG’s discrimination for new-onset HF was 0.725 in YNHHS, 0.792 in UKB, and 0.833 in ELSA-Brasil. Across cohorts, incorporating AI-ECG predictions in addition to PCP-HF resulted in improved Harrel’s C-statistic (Δ=0.112-0.114), with an IDI of 0.078-0.238 and an NRI of 20.1%-48.8% for AI-ECG vs. PCP-HF.Conclusions and RelevanceAcross multinational cohorts, a noise-adapted AI model with lead I ECGs as the sole input defined HF risk, representing a scalable portable and wearable device-based HF risk-stratification strategy.KEY POINTSQuestionCan single-lead electrocardiogram (ECG) tracings predict heart failure (HF) risk?FindingsWe evaluated a noise-adapted artificial intelligence (AI) algorithm for single-lead ECGs as the sole input across multinational cohorts, spanning a diverse integrated US health system and large community-based cohorts in the UK and Brazil. A positive AI-ECG screen was associated with a 3- to 7-fold higher HF risk, independent of age, sex, and comorbidities. The AI model achieved incremental discrimination and improved reclassification for HF over the pooled cohort equations to prevent HF (PCP-HF).MeaningA noise-adapted AI model for single-lead ECG predicted the risk of new-onset HF, representing a scalable HF risk-stratification strategy for portable and wearable devices.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3