High order expression dependencies finely resolve cryptic states and subtypes in single cell data

Author:

Jansma AbelORCID,Yao YuelinORCID,Wolfe Jareth,Del Debbio LuigiORCID,Beentjes SjoerdORCID,Ponting Chris P.ORCID,Khamseh AvaORCID

Abstract

AbstractSingle cells are typically typed by clustering in reduced dimensional transcriptome space. Here we introduce Stator, a novel method, workflow and app that reveals cell types, subtypes and states without relying on local proximity of cells in gene expression space. Rather, Stator derives higher-order gene expression dependencies from a sparse gene-by-cell expression matrix. From these dependencies the method multiply labels the same single cell according to type, sub-type and state (activation, differentiation or cell cycle sub-phase). By applying the method to data from mouse embryonic brain, and human healthy or diseased liver, we show how Stator first recapitulates other methods’ cell type labels, and then reveals combinatorial gene expression markers of cell type, state, and disease at higher resolution. By allowing multiple state labels for single cells we reveal cell type fates of embryonic progenitor cells and liver cancer states associated with patient survival.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3