Sex chromosome dominance in a UV sexual system

Author:

Vigneau Jeromine,Martinho Claudia,Godfroy Olivier,Zheng Min,Haas Fabian B.,Borg Michael,Coelho Susana M.ORCID

Abstract

AbstractThe alternation between multicellular haploid gametophytes and diploid sporophytes is a defining feature of most plant and algal life cycles. In such organisms, male and female sexes are determined in the haploid gametophyte with a female (U) or male (V) sex chromosome. Once the U and V chromosomes unite at fertilisation, sex determination no longer occurs, raising key questions about the fate of UV sex chromosomes in the diploid sporophyte stage of the life cycle. Here, we unravel the genetic and molecular interactions between the U and V chromosomes by assessing transcriptional and chromatin states across the life cycle of the brown algaEctocarpusalongsideouroborosmutants that decouple life cycle stage from ploidy. We reveal how sex chromosome genes are developmentally regulated across the life cycle, with genes involved in female sex determination in particular undergoing strong down-regulation in the sporophyte. Diploidouroborosmutants containing both a U and V sex chromosome behave as functional male gametophytes yet still exhibit feminized transcription, suggesting that presence of the V chromosome alone is insufficient to fully suppress female developmental program. Although the silencing of sex chromosome genes in the diploid sporophyte does not appear to correlate with localised changes in chromatin state, small RNAs may play a role in the repression of a female sex-linked gene. Finally, we show how histone H3K79me2 is globally re-configured in the diploid phase of the life cycle, including the sex determining region of the UV sex chromosomes. Contrary to its pattern in the haploid gametophyte, H3K79me2 no longer associates with repressed genes in the diploid sporophyte, suggesting that the function of this histone mark inEctocarpusmay be more complex than previously appreciated.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3