Affiliation:
1. The School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia
2. Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, New South Wales, Australia
Abstract
The evolution of sex-specific phenotypes is an important dimension of diversification and local adaptation. The sex-dependent regulation of gene expression is considered a key genomic mechanism facilitating sex-dependent adaptation. In many species, genes with male-biased expression evolve faster in DNA sequence and expression level than genes with female-biased or sexually monomorphic expression. While positive selection may be responsible for rapid DNA sequence evolution, why expression of male-biased genes also evolves rapidly remains unclear. Beyond sex differences in selection, some aspects of the genetic architecture of gene expression could contribute to the rapid evolution of male-biased gene expression. First, male-biased genes might simply have greater standing genetic variance than female-biased genes. Second, male-biased genes could be less constrained by pleiotropy, either within or between sexes. Here, we evaluate these alternative explanations on an intraspecific scale using a series of quantitative genetic experiments conducted on natural variation in male and female gene expression in the fly
Drosophila serrata
. Male-biased genes had significantly higher genetic variance than female-biased genes and were generally more narrowly expressed across tissues, suggesting lower within-individual pleiotropy. However, consistent with stronger constraints due to between-sex pleiotropy, their between-sex genetic correlations,
r
MF
, were higher than for female-biased genes and more strongly negatively associated with sex bias. Using an extensive clinal dataset, we tested whether sex differences in gene expression divergence among populations have been shaped by pleiotropy
.
Here too, male-biased gene divergence was more strongly associated with between-sex pleiotropy than was female-biased gene divergence. Systematic differences in genetic variance and pleiotropy may be important factors influencing sex-specific adaptation arising through changes in gene expression.
This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences’.
Funder
Australian Research Council
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献