Abstract
SummaryChromothripsis, the process of catastrophic shattering and haphazard repair of chromosomes, is a common event in cancer. Whether chromothripsis might constitute an actionable molecular event amenable to therapeutic targeting remains an open question. We describe recurrent chromothripsis of chromosome 21 in a subset of patients in blast phase of a myeloproliferative neoplasm (BP-MPN), which alongside other structural variants leads to amplification of a region of chromosome 21 in ∼25% of patients (‘chr21amp’). We report that chr21amp BP-MPN has a particularly aggressive and treatment-resistant phenotype. The chr21amp event is highly clonal and present throughout the hematopoietic hierarchy.DYRK1A, a serine threonine kinase and transcription factor, is the only gene in the 2.7Mb minimally amplified region which showed both increased expression and chromatin accessibility compared to non-chr21amp BP-MPN controls. We demonstrate thatDYRK1Ais a central node at the nexus of multiple cellular functions critical for BP-MPN development, including DNA repair, STAT signalling and BCL2 overexpression.DYRK1Ais essential for BP-MPN cell proliferationin vitroandin vivo, and DYRK1A inhibition synergises with BCL2 targeting to induce BP-MPN cell apoptosis. Collectively, these findings define the chr21amp event as a prognostic biomarker in BP-MPN and link chromothripsis to a druggable target.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献