Abstract
AbstractChromothripsis refers to massive genomic rearrangements developed during a catastrophic event. In total acute myeloid leukemia (AML), the incidence of chromothripsis ranges from 0 to 6.6%, in cases of complex karyotype AML, the incidence of chromothripsis ranges from 27.3 to 100%, whereas in cases of AML with TP53 mutations, the incidence ranges from 11.1 to 90%. For other types of malignancies, the incidence of chromothripsis also varies, from 0 to 10.5% in myelodysplastic syndrome to up to 61.5% in cases of myelodysplastic syndrome with TP53 mutations.Chromothripsis is typically associated with complex karyotypes and TP53 mutations, and monosomal karyotypes are associated with the condition. ERG amplifications are frequently noted in cases of chromothripsis, whereas MYC amplifications are not. Moreover, FLT3 and NPM1 mutations are negatively associated with chromothripsis. Chromothripsis typically occurs in older patients with AML with low leukocyte counts and bone marrow blast counts. Rare cases of patients with chromothripsis who received intensive induction chemotherapy revealed low response rates and poor overall prognosis. Signal pathways in chromothripsis typically involve copy number gain and upregulation of oncogene gene sets that promote cancer growth and a concomitant copy number loss and downregulation of gene sets associated with tumor suppression functions.Patients with chromothripsis showed a trend of lower complete remission rate and worse overall survival in myeloid malignancy. Large-scale studies are required to further elucidate the causes and treatments of the condition.
Funder
National Taiwan University Hospital, Taiwan
Publisher
Springer Science and Business Media LLC