CycPeptMP: Enhancing Membrane Permeability Prediction of Cyclic Peptides with Multi-Level Molecular Features and Data Augmentation

Author:

Li JiananORCID,Yanagisawa KeisukeORCID,Akiyama YutakaORCID

Abstract

Cyclic peptides are versatile therapeutic agents with many excellent properties, such as high binding affinity, minimal toxicity, and the potential to engage challenging protein targets. However, the pharmaceutical utilities of cyclic peptides are limited by their low membrane permeability—an essential indicator of oral bioavailability and intracellular targeting. Current machine learning-based models of cyclic peptide permeability show variable performance due to the limitations of experimental data. Furthermore, these methods use features derived from the whole molecule which are used to predict small molecules and ignore the unique structural properties of cyclic peptides. This study presents CycPeptMP: an accurate and efficient method for predicting the membrane permeability of cyclic peptides. We designed features for cyclic peptides at the atom-, monomer-, and peptide-levels, and seamlessly integrated these into a fusion model using state-of-the-art deep learning technology. Using the latest data, we applied various data augmentation techniques to enhance model training efficiency. The fusion model exhibited excellent prediction performance, with root mean squared error of 0.503 and correlation coefficient of 0.883. Ablation studies demonstrated that all feature levels were essential for predicting membrane permeability and confirmed the effectiveness of augmentation to improve prediction accuracy. A comparison with a molecular dynamics-based method showed that CycPeptMP accurately predicted the peptide permeability, which is otherwise difficult to predict using simulations.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3