A Convolutional Neural Network based system for classifying malignant and benign skin lesions using mobile-device images

Author:

Mhedbi Rim,Chan Hannah O.,Credico Peter,Joshi Rakesh,Wong Joshua N.,Hong Collin

Abstract

AbstractThe escalating incidence of skin lesions, coupled with a scarcity of dermatologists and the intricate nature of diagnostic procedures, has resulted in prolonged waiting periods. Consequently, morbidity and mortality rates stemming from untreated cancerous skin lesions have witnessed an upward trend. To address this issue, we propose a skin lesion classification model that leverages the efficient net B7 Convolutional Neural Network (CNN) architecture, enabling early screening of skin lesions based on camera images. The model is trained on a diverse dataset encompassing eight distinct skin lesion classes: Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Melanoma (MEL), Dysplastic Nevi (DN), Benign Keratosis-Like lesions (BKL), Melanocytic Nevi (NV), and an ‘Other’ class. Through multiple iterations of data preprocessing, as well as comprehensive error analysis, the model achieves a remarkable accuracy rate of 87%.

Publisher

Cold Spring Harbor Laboratory

Reference12 articles.

1. “global burden of cutaneous melanoma in 2020 and projections to 2040,” World Health Organization, Mar. 2022. [Online]. Available: https://www.iarc.who.int/wp-content/uploads/2022/03/pr311 E.pdf

2. “Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques;Expert Systems with Applications,2020

3. “A novel approach for the shape characterisation of non-melanoma skin lesions using elliptic fourier analyses and clinical images;Journal of Clinical Medicine,2022

4. “Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art;Artificial Intelligence Review,2020

5. F. Shahabi , A. Rouhi , and R. Rastegari , “The performance of deep and conventional machine learning techniques for skin lesion classification,” in 2021 IEEE 18th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). IEEE, oct 2021.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3