Abstract
ABSTRACTLarge-scale biological networks map functional connections between most genes in the genome and can potentially uncover high level organizing principles governing cellular functions. These networks, however, are famously complex and often regarded as disordered masses of tangled interactions (“hairballs”) that are nearly impenetrable to biologists. As a result, our current understanding of network functional organization is very limited. To address this problem, I developed a systematic quantitative approach for annotating biological networks and examining their functional structure. This method, named Spatial Analysis of Functional Enrichment (SAFE), detects network regions that are statistically overrepresented for a functional group or a quantitative phenotype of interest, and provides an intuitive visual representation of their relative positioning within the network. By successfully annotating theSaccharomyces cerevisiaegenetic interaction network with Gene Ontology terms, SAFE proved to be sensitive to functional signals and robust to noise. In addition, SAFE annotated the network with chemical genomic data and uncovered a new potential mechanism of resistance to the anti-cancer drug bortezomib. Finally, SAFE showed that protein-protein interactions, despite their apparent complexity, also have a high level functional structure. These results demonstrate that SAFE is a powerful new tool for examining biological networks and advancing our understanding of the functional organization of the cell.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献