Nafamostat Mesylate in lipid carrier for nasal SARS-CoV2 titer reduction in a hamster model

Author:

Cornelissen Lisette,Hoefsmit Esmee,Rao Disha,Lijnsvelt Judith,van Keulen Lucien,van Es Marieke,Grimm Volker,Medema René H.,Blank Christian U.

Abstract

AbstractSevere acute respiratory syndrome corona virus 2 (SARS-CoV-2) has been responsible for the largest pandemic in recent decades. After seemingly being in control due to consequent lock-downs and social distancing, the majority of countries faces currently a second wave of exponentially increasing infections, hospital referrals and deaths due to SARS-CoV-2-mediated disease (COVID-19). To date, no effective vaccination has been found, and wearing masks and social distancing are the only effective approaches to reduce further spreading.However, unwillingness in the societies to distance again and consequently wear masks might be reasons for the second SARS-CoV-2 infection wave. User-friendly chemicals interfering at the host site with viral entry might be an approach to contain the pandemic. In addition, such an approach would work synergistic with vaccinations that miss new virus mutants.Nafamostat (NM) has been shown in vitro to interfere with cellular virus entry by inhibition of the host transmembrane protease serine 2 (TMPRSS2), an enzyme required for SARS-CoV-2 spike protein cleavage, a prerequisite for cell entry.We hypothesized that nasal application of NM in a liposomal layer (as additional mechanical barrier) could lower the nasal viral load and subsequently reduce the severity of COVID-19. We found, indeed, that nasal viral load one day post single NM application, was lowered in a hamster SARS-CoV-2 infection model. However, severity of subsequent local tissue destruction and weight loss due to pneumonitis was not favorably altered.In conclusion, a single NM application reduced nasal viral load, but did not favorably improve the outcome of COVID-19, likely due to the short half-time of NM. Improvement of NM stability or repetitive application (which was not permitted in this animal model according to Dutch law) might circumvent these challenges.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3