Abstract
AbstractThe mammalian gut contains trillions of microbes that interact with host cells and monitor changes in the environment. Opportunistic pathogens exploit environmental conditions to stimulate their growth and virulence, leading to a resurgence of chronic disorders such as inflammatory bowel disease (IBD). Current therapies are effective in less than 30% of patients due to the lack of adherence to prescription schedules and overall, off-target effects. Smart microbial therapeutics can be engineered to colonize the gut, providingin situsurveillance and conditional disease modulation. However, many current engineered microbes can only respond to single gut environmental factors, limiting their effectiveness. In this work, we implement the previously characterized split activator AND logic gate in the probioticE. colistrain Nissle 1917. Our system can respond to two input signals: the inflammatory biomarker tetrathionate and a second input signal, IPTG. We report 4-6 fold induction with minimal leak when both signals are present. We model the dynamics of the AND gate using chemical reaction networks, and by tuning parametersin silico, we identified perturbations that affect our circuit’s selectivity. We anticipate that our results will prove useful for designing living therapeutics for spatial targeting and signal processing in complex environments.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献