Automatic whole cell organelle segmentation in volumetric electron microscopy

Author:

Heinrich LarissaORCID,Bennett DavisORCID,Ackerman DavidORCID,Park WoohyunORCID,Bogovic JohnORCID,Eckstein NilsORCID,Petruncio AlysonORCID,Clements JodyORCID,Xu C. ShanORCID,Funke JanORCID,Korff WyattORCID,Hess Harald F.ORCID,Lippincott-Schwartz JenniferORCID,Saalfeld StephanORCID,Weigel Aubrey V.ORCID,

Abstract

Cells contain hundreds of different organelle and macromolecular assemblies intricately organized relative to each other to meet any cellular demands. Obtaining a complete understanding of their organization is challenging and requires nanometer-level, threedimensional reconstruction of whole cells. Even then, the immense size of datasets and large number of structures to be characterized requires generalizable, automatic methods. To meet this challenge, we developed an analysis pipeline for comprehensively reconstructing and analyzing the cellular organelles in entire cells imaged by focused ion beam scanning electron microscopy (FIB-SEM) at a near-isotropic size of 4 or 8 nm per voxel. The pipeline involved deep learning architectures trained on diverse samples for automatic reconstruction of 35 different cellular organelle classes - ranging from endoplasmic reticulum to microtubules to ribosomes - from multiple cell types.Automatic reconstructions were used to directly quantify various previously inaccessible metrics about these structures, including their spatial interactions. We show that automatic organelle reconstructions can also be used to automatically register light and electron microscopy images for correlative studies. We created an open data and open source web repository, OpenOrganelle, to share the data, computer code, and trained models, enabling scientists everywhere to query and further reconstruct the datasets.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. Applying systems-level spectral imaging and analysis to reveal the organelle interactome

2. Xu, C. S. et al. Isotropic 3D electron microscopy reference library of whole cells and tissues. Manuscript in preparation (2020).

3. The structure of the nervous system of the nematodeCaenorhabditis elegans

4. Ciresan, D. , Giusti, A. , Gambardella, L. M. & Schmidhuber, J. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. in Advances in Neural Information Processing Systems 25 (eds. Pereira, F. , Burges, C. J. C. , Bottou, L. & Weinberger, K. Q. ) 2843–2851 (Curran Associates, Inc., 2012).

5. High-precision automated reconstruction of neurons with flood-filling networks

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3