Automated segmentation of cell organelles in volume electron microscopy using deep learning

Author:

Nešić Nebojša1ORCID,Heiligenstein Xavier2,Zopf Lydia34,Blüml Valentin3,Keuenhof Katharina S.5,Wagner Michael6,Höög Johanna L.5,Qi Heng7,Li Zhiyang8,Tsaramirsis Georgios9,Peddie Christopher J.10,Stojmenović Miloš1,Walter Andreas6

Affiliation:

1. Department of Computer Science and Electrical Engineering Singidunum University Belgrade Serbia

2. CryoCapCell Le Kremlin‐Bicêtre France

3. Austrian BioImaging Vienna BioCenter Core Facilities Vienna Austria

4. Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center Vienna Austria

5. Department for Chemistry and Molecular Biology University of Gothenburg Gothenburg Sweden

6. Centre for Optical Technologies Aalen University Aalen Germany

7. Department of Computer Science Dalian University of Technology Dalian China

8. Department of Computer Science Dalian Maritime University Dalian China

9. Faculty of Computer Information Higher Colleges of Technology Abu Dhabi United Arab Emirates

10. Electron Microscopy STP The Francis Crick Institute London United Kingdom

Abstract

AbstractRecent advances in computing power triggered the use of artificial intelligence in image analysis in life sciences. To train these algorithms, a large enough set of certified labeled data is required. The trained neural network is then capable of producing accurate instance segmentation results that will then need to be re‐assembled into the original dataset: the entire process requires substantial expertise and time to achieve quantifiable results. To speed‐up the process, from cell organelle detection to quantification across electron microscopy modalities, we propose a deep‐learning based approach for fast automatic outline segmentation (FAMOUS), that involves organelle detection combined with image morphology, and 3D meshing to automatically segment, visualize and quantify cell organelles within volume electron microscopy datasets. From start to finish, FAMOUS provides full segmentation results within a week on previously unseen datasets. FAMOUS was showcased on a HeLa cell dataset acquired using a focused ion beam scanning electron microscope, and on yeast cells acquired by transmission electron tomography.Research Highlights Introducing a rapid, multimodal machine‐learning workflow for the automatic segmentation of 3D cell organelles. Successfully applied to a variety of volume electron microscopy datasets and cell lines. Outperforming manual segmentation methods in time and accuracy. Enabling high‐throughput quantitative cell biology.

Funder

Francis Crick Institute

European Cooperation in Science and Technology

Vetenskapsrådet

Knut och Alice Wallenbergs Stiftelse

Medical Research Council

Wellcome Trust

Publisher

Wiley

Reference28 articles.

1. Arganda‐Carreras I. Kaynig V. Rueden C. Schindelin J. Cardona A. &Sebastian Seung H.(2016).Trainable segmentation: Release v3.1.2.

2. ariadne.ai. (2022).ai‐powered biomedical image analysis.https://ariadne.ai/

3. ilastik: interactive machine learning for (bio)image analysis

4. Bochkovskiy A. Wang C.‐Y. &Liao H.‐Y. M.(2020).Yolov4: Optimal speed and accuracy of object detection. arXiv Preprint arXiv:2004.10934.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3