NGScloud2: optimized bioinformatic analysis using Amazon Web Services

Author:

Mora-Márquez FernandoORCID,Vázquez-Poletti José LuisORCID,de Heredia Unai LópezORCID

Abstract

AbstractNGScloud was a bioinformatic system developed to perform de novo RNAseq analysis of non-model species by exploiting the cloud computing capabilities of Amazon Web Services. The rapid changes undergone in the way this cloud computing service operates, along with the continuous release of novel bioinformatic applications to analyze next generation sequencing data, have made the software obsolete. NGScloud2 is an enhanced and expanded version of NGScloud that permits the access to ad hoc cloud computing infrastructure, scaled according to the complexity of each experiment. NGScloud2 presents major technical improvements, such as the possibility of running spot instances and the most updated AWS instances types, that can lead to significant cost savings. As compared to its initial implementation, this improved version updates and includes common applications for de novo RNAseq analysis, and incorporates tools to operate workflows of bioinformatic analysis of reference-based RNAseq, RADseq and functional annotation. NGScloud2 optimizes the access to Amazon’s large computing infrastructures to easily run popular bioinformatic software applications, otherwise inaccessible to non-specialized users lacking suitable hardware infrastructures. The correct performance of the pipelines for de novo RNAseq, reference-based RNAseq, RADseq and functional annotation was tested with real experimental data. NGScloud2 code, instructions for software installation and use are available at https://github.com/GGFHF/NGScloud2. NGScloud2 includes a companion package, NGShelper that contains python utilities to post-process the output of the pipelines for downstream analysis at https://github.com/GGFHF/NGShelper.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. HTSeq--a Python framework to work with high-throughput sequencing data

2. Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

3. Harnessing the power of RADseq for ecological and evolutionary genomics

4. Trimmomatic: a flexible trimmer for Illumina sequence data

5. Near-optimal probabilistic RNA-seq quantification

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3