Deep Semi-Supervised Learning Improves Universal Peptide Identification of Shotgun Proteomics Data

Author:

Halloran John T.ORCID,Urban GregorORCID,Rocke DavidORCID,Baldi Pierre

Abstract

AbstractSemi-supervised machine learning post-processors critically improve peptide identification of shot-gun proteomics data. Such post-processors accept the peptide-spectrum matches (PSMs) and feature vectors resulting from a database search, train a machine learning classifier, and recalibrate PSMs using the trained parameters, often yielding significantly more identified peptides across q-value thresholds. However, current state-of-the-art post-processors rely on shallow machine learning methods, such as support vector machines. In contrast, the powerful training capabilities of deep learning models have displayed superior performance to shallow models in an ever-growing number of other fields. In this work, we show that deep models significantly improve the recalibration of PSMs compared to the most accurate and widely-used post-processors, such as Percolator and PeptideProphet. Furthermore, we show that deep learning is able to adaptively analyze complex datasets and features for more accurate universal post-processing, leading to both improved Prosit analysis and markedly better recalibration of recently developed database-search functions.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Mass-spectrometric exploration of proteome structure and function

2. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

3. P. Baldi . Deep Learning in Science: Theory, Algorithms, and Applications. Cambridge University Press, Cambridge, UK, 2021. In press.

4. Searching for exotic particles in high-energy physics with deep learning;Nature communications,2014

5. Accurate and Sensitive Peptide Identification with Mascot Percolator

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3