Semi-supervised machine learning for sensitive open modification spectral library searching

Author:

Arab IssarORCID,Fondrie William E.ORCID,Laukens KrisORCID,Bittremieux WoutORCID

Abstract

AbstractA key analysis task in mass spectrometry proteomics is matching the acquired tandem mass spectra to their originating peptides by sequence database searching or spectral library searching. Machine learning is an increasingly popular post-processing approach to maximize the number of confident spectrum identifications that can be obtained at a given false discovery rate threshold. Here, we have integrated semi-supervised machine learning in the ANN-SoLo tool, an efficient spectral library search engine that is optimized for open modification searching to identify peptides with any type of post-translational modification. We show that machine learning rescoring boosts the number of spectra that can be identified for both standard searching and open searching, and we provide insights into relevant spectrum characteristics harnessed by the machine learning model. The semi-supervised machine learning functionality has now been fully integrated into ANN-SoLo, which is available as open source under the permissive Apache 2.0 license on GitHub athttps://github.com/bittremieux/ANN-SoLo.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3