Abstract
AbstractMotivationmicroRNAs (miRNAs) are essential gene regulators and their dysregulation often leads to diseases. Easy access to miRNA information is crucial for interpreting generated experimental data, connecting facts across publications, and developing new hypotheses built on previous knowledge. Here, we present emiRIT, a text mining-based resource, which presents miRNA information mined from the literature through a user-friendly interface.ResultsWe collected 149,233 miRNA-PubMed ID pairs from Medline between January 1997 to May 2020. emiRIT currently contains miRNA-gene regulation (60,491 relations); miRNA-disease (cancer) (12,300 relations); miRNA-biological process and pathways (23,390 relations); and circulatory miRNAs in extracellular locations (3,782 relations). Biological entities and their relation to miRNAs were extracted from Medline abstracts using publicly available and in-house developed text mining tools, and the entities were normalized to facilitate querying and integration. We built a database and an interface to store and access the integrated data, respectively.ConclusionWe provide an up-to-date and user-friendly resource to facilitate access to comprehensive miRNA information from the literature on a large-scale, enabling users to navigate through different roles of miRNA and examine them in a context specific to their information needs. To assess our resource’s information coverage, in the absence of gold standards, we have conducted two case studies focusing on the target and differential expression information of miRNAs in the context of diseases. Database URL: https://research.bioinformatics.udel.edu/emirit/
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献