Human gene function publications that describe wrongly identified nucleotide sequence reagents are unacceptably frequent within the genetics literature

Author:

Park Yasunori,West Rachael AORCID,Pathmendra Pranujan,Favier BertrandORCID,Stoeger ThomasORCID,Capes-Davis AmandaORCID,Cabanac GuillaumeORCID,Labbé CyrilORCID,Byrne Jennifer AORCID

Abstract

AbstractNucleotide sequence reagents underpin a range of molecular genetics techniques that have been applied across hundreds of thousands of research publications. We have previously reported wrongly identified nucleotide sequence reagents in human gene function publications and described a semi-automated screening tool Seek & Blastn to fact-check the targeting or non-targeting status of nucleotide sequence reagents. We applied Seek & Blastn to screen 11,799 publications across 5 literature corpora, which included all original publications in Gene from 2007-2018 and all original open-access publications in Oncology Reports from 2014-2018. After manually checking the Seek & Blastn screening outputs for over 3,400 human research papers, we identified 712 papers across 78 journals that described at least one wrongly identified nucleotide sequence. Verifying the claimed identities of over 13,700 nucleotide sequences highlighted 1,535 wrongly identified sequences, most of which were claimed targeting reagents for the analysis of 365 human protein-coding genes and 120 non-coding RNAs, respectively. The 712 problematic papers have received over 17,000 citations, which include citations by human clinical trials. Given our estimate that approximately one quarter of problematic papers are likely to misinform or distract the future development of therapies against human disease, urgent measures are required to address the problem of unreliable gene function papers within the literature.Author summaryThis is the first study to have screened the gene function literature for nucleotide sequence errors at the scale that we describe. The unacceptably high rates of human gene function papers with incorrect nucleotide sequences that we have discovered represent a major challenge to the research fields that aim to translate genomics investments to patients, and that commonly rely upon reliable descriptions of gene function. Indeed, wrongly identified nucleotide sequence reagents represent a double concern, as both the incorrect reagents themselves and their associated results can mislead future research, both in terms of the research directions that are chosen and the experiments that are undertaken. We hope that our research will inspire researchers and journals to seek out other problematic human gene function papers, as we are unfortunately concerned that our results represent the tip of a much larger problem within the literature. We hope that our research will encourage more rigorous reporting and peer review of gene function results, and we propose a series of responses for the research and publishing communities.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3