Genetic and environmental regulation of caudate nucleus transcriptome: insight into schizophrenia risk and the dopamine system

Author:

Benjamin Kynon JM,Feltrin Arthur S,Barbosa André Rocha,Jaffe Andrew EORCID,Collado-Torres Leonardo,Burke Emily E,Shin Joo Heon,Ulrich William S,Deep-Soboslay Amy,Tao Ran,Hyde Thomas M,Kleinman Joel E,Erwin Jennifer A,Weinberger Daniel R,Paquola Apuã CM,

Abstract

AbstractIncreased dopamine (DA) signaling in the striatum has been a cornerstone hypothesis about psychosis for over 50 years. Increased dopamine release results in psychotic symptoms, while D2 dopamine receptor (DRD2) antagonists are antipsychotic. Recent schizophrenia GWAS identified risk-associated common variants near the DRD2 gene, but the risk mechanism has been unclear. To gain novel insight into risk mechanisms underlying schizophrenia, we performed a comprehensive analysis of the genetic and transcriptional landscape of schizophrenia in postmortem caudate nucleus from a cohort of 444 individuals. Integrating expression quantitative trait loci (eQTL) analysis, transcriptome wide association study (TWAS), and differential expression analysis, we found many new genes associated with schizophrenia through genetic modulation of gene expression. Using a new approach based on deep neural networks, we construct caudate nucleus gene expression networks that highlight interactions involving schizophrenia risk. Interestingly, we found that genetic risk for schizophrenia is associated with decreased expression of the short isoform of DRD2, which encodes the presynaptic autoreceptor, and not with the long isoform, which encodes the postsynaptic receptor. This association suggests that decreased control of presynaptic DA release is a potential genetic mechanism of schizophrenia risk. Altogether, these analyses provide a new resource for the study of schizophrenia that can bring insight into risk mechanisms and potential novel therapeutic targets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3