Identification of genetic variants regulating the abundance of clinically relevant plasma proteins using the Diversity Outbred mouse model

Author:

Philtjens StéphanieORCID,Acri Dominic J.ORCID,Kim ByungwookORCID,Kim Hyewon,Kim JungsuORCID

Abstract

AbstractAlthough there have been numerous expression quantitative trait loci (eQTL) studies, the effect of genetic variants on the levels of multiple plasma proteins still warrants more systematic investigation. To identify genetic modifiers that influence the levels of clinically relevant plasma proteins, we performed protein quantitative trait locus (pQTL) mapping on 92 proteins using the Diversity Outbred (DO) mouse population and identified 12 significant cis and 6 trans pQTL. Among them, we discovered coding variants in a cis-pQTL in Ahr and a trans-pQTL in Rfx1 for the IL-17A protein. Our study reports an innovative pipeline for the identification of genetic modifiers that may be targeted for drug development.Author SummaryBlood plasma is a body fluid that can be collected in a noninvasive way to detect diseases, such as autoimmune disease. However, it is known that plasma protein levels are affected by both the environment and genetic background. To determine the effect of genetics on plasma protein levels in human, one needs a rather large sample size. To overcome this critical issue, a mouse model, the Diversity Outbred (DO), was established that is genetically as diverse as the human population. In this study, we used N=140 DO mice and genotyped over 140,000 variants. In addition, we measured the levels of 92 proteins in plasma of these DO mice using Olink Proteomics technology. The proteins detected in this panel are known to be detectable in human plasma, making our study translatable to human. We identified 18 significant protein quantitative trait loci. Furthermore, we describe an analysis pipeline that allows for the detection of a single gene in the locus that is responsible for the differences in protein levels. We identified how variants in the Regulatory Factor X1 (Rfx1) gene regulates Interleukin-17A (IL-17A) plasma levels. Our study reports an innovative approach to identify genetic modifiers that may be targeted for drug development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3