Polygenic transcriptome risk scores improve portability of polygenic risk scores across ancestries

Author:

Liang YanyuORCID,Pividori MiltonORCID,Manichaikul AniORCID,Palmer Abraham A.ORCID,Cox Nancy J.ORCID,Wheeler HeatherORCID,Im Hae KyungORCID

Abstract

AbstractPolygenic risk scores (PRS) are on course to translate the results of genome-wide association studies (GWAS) into clinical practice. To date, most GWAS have been based on individuals of European-ancestry, meaning that the utility of PRS for non-European populations is limited because SNP effects and LD patterns may not be conserved across populations. We hypothesized that cross population prediction at the level of genes rather than SNPs would be more effective, since the effect of genes on traits is likely to be more highly conserved. Therefore, we developed a framework to convert effect sizes at SNPs into effect sizes for genetically predicted transcript abundance, which we used for prediction in non-European populations. We compared this approach, which we call polygenic transcriptome risk scores (PTRS), to PRS, using data from 17 quantitative traits that were measured in multiple ancestries (European, African, East Asian, and South Asian) by UK Biobank. On average, PTRS using whole blood predicted transcriptome had lower absolute prediction accuracy than PRS, as we expected since not all regulatory processes were captured by a single tissue. However, as hypothesized, we found that in the African target set, the portability (prediction accuracy relative to the European reference set) was significantly higher for PTRS than PRS (p=0.03) with additional gain when transcriptomic prediction models ancestry matched the target population (p=0.021). Taken together, our results suggest that using PTRS can improve prediction in underrepresented populations and that increasing the diversity of transcriptomic data may be an effective way to improve portability of GWAS results between populations and help reduce health disparities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3