Learning epistatic polygenic phenotypes with Boolean interactions

Author:

Behr Merle,Kumbier Karl,Cordova-Palomera Aldo,Aguirre Matthew,Ashley Euan,Butte Atul J.,Arnaout Rima,Brown Ben,Priest James,Yu Bin

Abstract

AbstractDetecting epistatic drivers of human phenotypes remains a challenge. Traditional approaches use regression to sequentially test multiplicative interaction terms involving single pairs of genetic variants. For higher-order interactions and genome-wide large-scale data, this strategy is computationally intractable. Moreover, multiplicative terms used in regression modeling may not capture the form of biological interactions. Building on the Predictability, Computability, Stability (PCS) framework, we introduce the epiTree pipeline to extract higher-order interactions from genomic data using tree-based models. The epiTree pipeline first selects a set of variants derived from tissue-specific estimates of gene expression. Next, it uses iterative random forests (iRF) to search training data for candidate Boolean interactions (pairwise and higher-order). We derive significance tests from interactions by simulating Boolean tree-structured null (no epistasis) and alternative (epistasis) distributions on hold-out test data. Finally, our pipeline computes PCS epistasis p-values that evaluate the stability of improvement in prediction accuracy via bootstrap sampling on the test set. We validate the epiTree pipeline using the phenotype of red-hair from the UK Biobank, where several genes are known to demonstrate epistatic interactions. epiTree recovers both previously reported and novel interactions, which represent forms of non-linearities not captured by logistic regression models. Additionally, epiTree suggests interactions between genes such as PKHD1 and XPOTP1, which are unlinked to MC1R, as novel candidate interactions associated with the red hair phenotype. Last but not least, we find that individual Boolean or tree-based epistasis models generally provide higher prediction accuracy than classical logistic regression.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3