Author:
Walakira Andrew,Ocira Junior,Duroux Diane,Fouladi Ramouna,Moškon Miha,Rozman Damjana,Van Steen Kristel
Abstract
AbstractGenes and gene products do not function in isolation but as components of complex networks of macromolecules through physical or biochemical interactions. Dependencies of gene mutations on genetic background (i.e., epistasis) are believed to play a role in understanding molecular underpinnings of complex diseases such as inflammatory bowel disease (IBD). However, the process of identifying such interactions is complex due to for instance the curse of high dimensionality, dependencies in the data and non-linearity. Here, we propose a novel approach for robust and computationally efficient epistasis detection. We do so by first reducing dimensionality, per gene via diffusion kernel principal components (kpc). Subsequently, kpc gene summaries are used for downstream analysis including the construction of a gene-based epistasis network. We show that our approach is not only able to recover known IBD associated genes but also additional genes of interest linked to this difficult gastrointestinal disease.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献