Cryptic promoter activation occurs by at least two different mechanisms in the Arabidopsis genome

Author:

Kudo Hisayuki,Matsuo Mitsuhiro,Satoh Soichirou,Hachisu Rei,Nakamura Masayuki,Yamamoto Yoshiharu Y,Hata Takayuki,Kimura Hiroshi,Matsui Minami,Obokata Junichi

Abstract

ABSTRACTIn gene-trap screening of plant genomes, promoterless reporter constructs are often expressed without trapping of annotated gene promoters. The molecular basis of this phenomenon, which has been interpreted as the trapping of cryptic promoters, is poorly understood. In this study, using Arabidopsis gene-trap lines in which a firefly luciferase (LUC) open reading frame (ORF) was expressed from intergenic regions, we found that cryptic promoter activation occurs by at least two different mechanisms: one is the capturing of pre-existing promoter-like chromatin marked by H3K4me3 and H2A.Z, and the other is the entirely new formation of promoter chromatin near the 5’ end of the inserted LUC ORF. To discriminate between these, we denoted the former mechanism as “cryptic promoter capturing”, and the latter one as “promoter de novo origination”. The latter finding raises a question as to how inserted LUC ORF sequence is involved in this phenomenon. To examine this, we performed a model experiment with chimeric LUC genes in transgenic plants. Using Arabidopsis psaH1 promoter–LUC constructs, we found that the functional core promoter region, where transcription start sites (TSS) occur, cannot simply be determined by the upstream nor core promoter sequences; rather, its positioning proximal to the inserted LUC ORF sequence was more critical. This result suggests that the insertion of the LUC ORF sequence alters the local distribution of the TSS in the plant genome. The possible impact of the two types of cryptic promoter activation mechanisms on plant genome evolution and endosymbiotic gene transfer is discussed.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3