Physiological role of the 3’IgH CBEs super-anchor in antibody class switching

Author:

Zhang Xuefei,Yoon Hye Suk,Chapdelaine-Williams Aimee M.,Kyritsis Nia,Alt Frederick W.

Abstract

ABSTRACTIgH class switch recombination (CSR) replaces Cμ constant region (CH) exons with one of six downstream CHS by joining transcription-targeted DSBs in the Cμ switch (S) region to DSBs in a downstream S region. Chromatin loop extrusion underlies fundamental CSR mechanisms including 3’IgH regulatory region (3’IgHRR)-mediated S region transcription, CSR center formation, and deletional CSR joining. There are ten consecutive CTCF binding elements (CBEs) downstream of the 3’IgHRR, termed the “3’IgH CBEs”. Prior studies showed that deletion of eight 3’IgH CBEs did not detectably affect CSR. Here, we report that deletion of all 3’IgH CBEs impacts, to varying degrees, germline transcription and CSR of upstream S regions, except Sγ1. Moreover, deletion of all 3’IgH CBEs rendered the 6kb region just downstream highly transcribed and caused sequences within to be aligned with Sμ, broken, and joined to form aberrant CSR rearrangements. These findings implicate the 3’IgH CBEs as a critical insulator for focusing loop extrusion-mediated 3’IgHRR transcriptional and CSR activities on upstream CH locus targets.SignificanceB lymphocytes change antibody heavy chain (IgH) isotypes by a recombination/deletion process called IgH class switch recombination (CSR). CSR involves introduction of DNA breaks into a donor switch (S) region and also into one of six downstream S regions, with joining of the breaks changing antibody isotype. A chromatin super-anchor, of unknown function, is located just downstream of the IgH locus. We show that complete deletion of this super-anchor variably decreases CSR to most S regions and creates an ectopic S region downstream of IgH locus that undergoes aberrant CSR-driven chromosomal rearrangements. Based on these and other findings, we conclude that the super-anchor downstream of IgH is a critical insulator for focusing potentially dangerous CSR rearrangements to the IgH locus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3