Abstract
AbstractMicronuclei, whole or fragmented chromosomes which are spatially separated from the main nucleus, are strongly associated with genomic instability and have been identified as drivers of tumorigenesis. Paradoxically, Kif18a mutant mice produce micronuclei due to unaligned chromosomes in vivo but do not develop spontaneous tumors, raising questions about whether all micronuclei contribute similarly to genomic instability and cancer. We report here that micronuclei in Kif18a mutant mice form stable nuclear envelopes. Challenging Kif18a mutant mice via deletion of the Trp53 gene led to formation of thymic lymphoma with elevated levels of micronuclei. However, loss of Kif18a had modest or no effect on survival of Trp53 homozygotes and heterozygotes, respectively. To further explore micronuclear envelope stability in KIF18A KO cells, we compared micronuclei induced via different insults in cultured cells. Micronuclei in KIF18A KO cells form stable nuclear envelopes characterized by increased recruitment of core and non-core nuclear envelope components and successful expansion of decondensing chromatin compared to those induced by microtubule drug washout or exposure to radiation. We also observed that lagging chromosomes, which lead to micronucleus formation, were positioned closer to the main chromatin masses, and further from the central spindle, in KIF18A KO cells. Our studies provide in vivo support to models suggesting that micronuclear fate depends on the sub-cellular location of late lagging chromosomes and suggest that not all micronuclei actively promote tumorigenesis.
Publisher
Cold Spring Harbor Laboratory