RangeShifter 2.0: An extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes

Author:

Bocedi GretaORCID,Palmer Stephen C. F.,Malchow Anne-KathleenORCID,Zurell DamarisORCID,Watts KevinORCID,Travis Justin M. J.ORCID

Abstract

AbstractProcess-based models are becoming increasingly used tools for understanding how species are likely to respond to environmental changes and to potential management options. RangeShifter is one such modelling platform, which has been used to address a range of questions including identifying effective reintroduction strategies, understanding patterns of range expansion and assessing population viability of species across complex landscapes.Here we introduce a new version, RangeShifter 2.0, which incorporates important new functionality. It is now possible to simulate dynamics over user-specified, temporally changing landscapes. Additionally, the genetic and evolutionary capabilities have been strengthened, notably by introducing an explicit genetic modelling architecture, which allows for simulation of neutral and adaptive genetic processes. Furthermore, emigration, transfer and settlement rules can now all evolve, allowing for sophisticated simulation of the evolution of dispersal. We illustrate the potential application of RangeShifter 2.0’s new functionality by two examples. The first illustrates the range expansion of a virtual species across a dynamically changing UK landscape. The second demonstrates how the software can be used to explore the concept of evolving connectivity in response to land-use modification, by examining how movement rules come under selection over landscapes of different structure and composition.RangeShifter 2.0 is built using object-oriented C++ providing computationally efficient simulation of complex individual-based, eco-evolutionary models. The code has been redeveloped to enable use across operating systems, including on high performance computing clusters, and the Windows GUI has been enhanced. Furthermore, the recoding of the package has supported the development of a new version running under the R platform, RangeShiftR.RangeShifter 2.0 will facilitate the development of in-silico assessments of how species will respond to environmental changes and to potential management options for conserving or controlling them. By making the code available open source, we hope to inspire further collaborations and extensions by the ecological community.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3