Abstract
AbstractProcess-based models are becoming increasingly used tools for understanding how species are likely to respond to environmental changes and to potential management options. RangeShifter is one such modelling platform, which has been used to address a range of questions including identifying effective reintroduction strategies, understanding patterns of range expansion and assessing population viability of species across complex landscapes.Here we introduce a new version, RangeShifter 2.0, which incorporates important new functionality. It is now possible to simulate dynamics over user-specified, temporally changing landscapes. Additionally, the genetic and evolutionary capabilities have been strengthened, notably by introducing an explicit genetic modelling architecture, which allows for simulation of neutral and adaptive genetic processes. Furthermore, emigration, transfer and settlement rules can now all evolve, allowing for sophisticated simulation of the evolution of dispersal. We illustrate the potential application of RangeShifter 2.0’s new functionality by two examples. The first illustrates the range expansion of a virtual species across a dynamically changing UK landscape. The second demonstrates how the software can be used to explore the concept of evolving connectivity in response to land-use modification, by examining how movement rules come under selection over landscapes of different structure and composition.RangeShifter 2.0 is built using object-oriented C++ providing computationally efficient simulation of complex individual-based, eco-evolutionary models. The code has been redeveloped to enable use across operating systems, including on high performance computing clusters, and the Windows GUI has been enhanced. Furthermore, the recoding of the package has supported the development of a new version running under the R platform, RangeShiftR.RangeShifter 2.0 will facilitate the development of in-silico assessments of how species will respond to environmental changes and to potential management options for conserving or controlling them. By making the code available open source, we hope to inspire further collaborations and extensions by the ecological community.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献