R2ROC: An efficient method of comparing two or more correlated AUC from out-of-sample prediction using polygenic scores

Author:

Momin Md. MoksedulORCID,Wray Naomi RORCID,Lee S. HongORCID

Abstract

AbstractPolygenic risk scores (PRSs) enable early prediction of disease risk. Evaluating PRS performance for binary traits commonly relies on the area under the receiver operating characteristic curve (AUC). However, the widely used DeLong’s method for comparative significance tests suffer from limitations, including computational time and the lack of a one-to-one mapping between test statistics based on AUC andR2. To overcome these limitations, we propose a novel approach that leverages the Delta method to derive the variance and covariance of AUC values, enabling a comprehensive and efficient comparative significance test. Our approach offers notable advantages over DeLong’s method, including reduced computation time (up to 150-fold), making it suitable for large-scale analyses and ideal for integration into machine learning frameworks. Furthermore, our method allows for a direct one-to-one mapping between AUC andR2values for comparative significance tests, providing enhanced insights into the relationship between these measures and facilitating their interpretation. We validated our proposed approach through simulations and applied it to real data comparing PRSs for diabetes and coronary artery disease (CAD) prediction in a cohort of 28,880 European individuals. The PRSs were derived using genome-wide association study summary statistics from two distinct sources. Our approach enabled a comprehensive and informative comparison of the PRSs, shedding light on their respective predictive abilities for diabetes and CAD. This advancement contributes to the assessment of genetic risk factors and personalized disease prediction, supporting better healthcare decision-making.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3