Ice nucleation proteins self-assemble into large fibres to trigger freezing at near 0 °C

Author:

Hansen ThomasORCID,Lee Jocelyn C.ORCID,Reicher NaamaORCID,Ovadia Gil,Guo ShuaiqiORCID,Guo WangbiaoORCID,Liu Jun,Braslavsky IdoORCID,Rudich YinonORCID,Davies Peter L.ORCID

Abstract

AbstractIn nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins of common environmental bacteria likePseudomonas syringaeandP. borealis. However, individually, these 100-kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an ice nucleation protein gene intoEscherichia coliled to efficient ice nucleation. Here we demonstrate that a positively-charged sub-domain at the C-terminal end of the central beta-solenoid of the ice nucleation protein is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinantE. colishowed that the ice nucleation protein multimers form fibres that are ∼ 5 nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3